Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.21.22278967

Résumé

Serum antibodies IgM and IgG are elevated during COVID-19 to defend against viral attack. Atypical results such as negative and abnormally high antibody expression were frequently observed whereas the underlying molecular mechanisms are elusive. In our cohort of 144 COVID-19 patients, 3.5% were both IgM and IgG negative whereas 29.2% remained only IgM negative. The remaining patients exhibited positive IgM and IgG expression, with 9.3% of them exhibiting over 20-fold higher titers of IgM than the others at their plateau. IgG titers in all of them were significantly boosted after vaccination in the second year. To investigate the underlying molecular mechanisms, we classed the patients into four groups with diverse serological patterns and analyzed their two-year clinical indicators. Additionally, we collected 111 serum samples for TMTpro-based longitudinal proteomic profiling and characterized 1494 proteins in total. We found that the continuously negative IgM and IgG expression during COVID-19 were associated with mild inflammatory reactions and high T cell responses. Low levels of serum IgD, inferior complement 1 activation of complement cascades, and insufficient cellular immune responses might collectively lead to compensatory serological responses, causing overexpression of IgM. Serum CD163 was positively correlated with antibody titers during seroconversion. This study suggests that patients with negative serology still developed cellular immunity for viral defense, and that high titers of IgM might not be favorable to COVID-19 recovery.


Sujets)
COVID-19
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1513873.v1

Résumé

More than 450 million individuals have recovered from COVID-19, but little is known about the host responses to long COVID. We performed proteomic and metabolomic analyses of 991 blood and urine specimens from 144 COVID-19 patients with comprehensive clinical data and up to 763 days of follow up. Our data showed that the lungs and kidneys are the most vulnerable organs in long COVID patients. Pulmonary and renal long COVID of one-year revisit can be predicted by a machine learning model based on clinical and multi-omics data collected during the first month from the disease onset with an ACC of 87.5%. Serum protein SFTPB and ATR were associated with pulmonary long COVID and might be potential therapeutic targets. Notably, our data show that all the patients with persistent pulmonary ground glass opacity or patchy opacity lesions developed into pulmonary fibrosis at two-year revisit. Together, this study depicts the longitudinal clinical and molecular landscape of COVID-19 with up to two-year follow-up and presents a method to predict pulmonary and renal long COVID.


Sujets)
COVID-19
4.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3786009

Résumé

The diagnosis and disease course monitoring of COVID-19 are mainly based on RT-PCR analysis of RNAs extracted from pharyngeal or nasopharyngeal swabs with potential live virus, posing a high risk to medical practitioners. Here, we investigated the feasibility of applying serum proteomics to classify COVID-19 patients in the nucleic acid positive (NCP) and negative (NCN) stages. We analyzed the proteome of 320 inactivated serum samples from 144 COVID-19 patients, and 45 controls and shortlisted 42 regulated proteins in the severe group and 12 regulated proteins in the non-severe group. Together with several key clinical indexes including days after symptom onset, platelet counts and magnesium, we developed machine learning models to classify NCP and NCN with an AUC of 0.94 for the severe cases and 0.89 for the non-severe cases. This study suggests the feasibility of utilizing quantitative serum proteomics for NCP-NCN classification.Funding: This work was supported by grants from the National Key R&D Program of China(No. 2020YFE0202200), National Natural Science Foundation of China (81672086), Zhejiang Province Analysis Test Project (2018C37032), the National Natural Science Foundation of China (81972492, 21904107), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Zhejiang Medical and Health Science and Technology Plan (2021KY394), Hangzhou Agriculture andSociety Advancement Program (20190101A04), and Westlake Education Foundation, Tencent Foundation.Conflict of Interest: Tiannan Guo is shareholder of Westlake Omics Inc. W.G. and N.X. are employees of Westlake Omics Inc. The remaining authors declare no competing interests.Ethical Approval: This study has been approved by both the Ethical/Institutional Review Boards of Taizhou Hospital and Westlake University. Informed contents from patients were waived by the boards.


Sujets)
COVID-19 , Troubles du rythme circadien du sommeil
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.10.21249333

Résumé

Serum lactate dehydrogenase (LDH) has been established as a prognostic indicator given its differential expression in COVID-19 patients. However, the molecular mechanisms underneath remain poorly understood. In this study, 144 COVID-19 patients were enrolled to monitor the clinical and laboratory parameters over three weeks. Serum lactate dehydrogenase (LDH) was shown elevated in the COVID-19 patients on admission and declined during the convalescence period, and its ability to classify patient severity outperformed other clinical indicators. A threshold of 247 U/L serum LDH on admission was determined for severity prognosis. Next, we classified a subset of 14 patients into high- and low-risk groups based on serum LDH expression and compared their quantitative serum proteomic and metabolomic differences. The results found COVID-19 patients with high serum LDH exhibited differentially expressed blood coagulation and immune responses including acute inflammatory responses, platelet degranulation, complement cascade, as well as multiple different metabolic responses including lipid metabolism, protein ubiquitination and pyruvate fermentation. Specifically, activation of hypoxia responses was highlighted in patients with high LDH expressions. Taken together, our data showed that serum LDH levels is associated COVID-19 severity, and that elevated serum LDH might be consequences of hypoxia and tissue injuries induced by inflammation.


Sujets)
Troubles de l'hémostase et de la coagulation , Lésions hépatiques dues aux substances , Hypoxie , Anomalies des plaquettes , COVID-19 , Inflammation
6.
ssrn; 2020.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3669140

Résumé

Background: Severity prediction of COVID-19 remains one of the major clinical challenges for the ongoing pandemic. In this study, we aim to establish a model for COVID-19 severity prediction and depict dynamic changes of key clinical features over 7 weeks.Methods: In our retrospective study, a total of 841 patients have been screened with the SARS-CoV-2 nucleic acid test, of which 144 patients were virus RNA (COVID-19) positive, resulting in a data matrix containing of 3,065 readings for 124 types of measurements from 17 categories. We built a support vector machine model assisted with genetic algorithm for feature selection based on the longitudinal measurement. 25 patients as a test cohort were included from an independent hospital.Findings: A panel of 11 routine clinical factors constructed a classifier for COVID-19 severity prediction, achieving an accuracy of over 94%. Validation of the model in an independent cohort containing 25 patients achieved an accuracy of 80%. The overall sensitivity, specificity, PPV and NPV were 0.70, 0.99, 0.93 and 0.93, respectively. This study presents a practical model for timely severity prediction for COVID-19, which is freely available at a webserver https://guomics.shinyapps.io/covidAI/.Interpretation: The model provided a classifier composed of 11 routine clinical features which are widely available during COVID-19 management which could predict the severity and may guide the medical care of COVID-19 patients.Funding: This work is supported by grants from Tencent Foundation (2020), National Natural Science Foundation of China (81972492, 21904107, 81672086), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04).Declaration of Interests: NAEthics Approval Statement: This study was approved by the Medical Ethics Committee of Taizhou Hospital, Shaoxing People’s Hospital and Westlake University, Zhejiang province of China, and informed consent was obtained from each enrolled subject.


Sujets)
COVID-19 , Troubles du rythme circadien du sommeil
7.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.07.28.20163022

Résumé

Severity prediction of COVID-19 remains one of the major clinical challenges for the ongoing pandemic. Here, we have recruited a 144 COVID-19 patient cohort consisting of training, validation, and internal test sets, longitudinally recorded 124 routine clinical and laboratory parameters, and built a machine learning model to predict the disease progression based on measurements from the first 12 days since the disease onset when no patient became severe. A panel of 11 routine clinical factors, including oxygenation index, basophil counts, aspartate aminotransferase, gender, magnesium, gamma glutamyl transpeptidase, platelet counts, activated partial thromboplastin time, oxygen saturation, body temperature and days after symptom onset, constructed a classifier for COVID-19 severity prediction, achieving accuracy of over 94%. Validation of the model in an independent cohort containing 25 patients achieved accuracy of 80%. The overall sensitivity, specificity, PPV and NPV were 0.70, 0.99, 0.93 and 0.93, respectively. Our model captured predictive dynamics of LDH and CK while their levels were in the normal range. This study presents a practical model for timely severity prediction and surveillance for COVID-19, which is freely available at webserver https://guomics.shinyapps.io/covidAI/.


Sujets)
COVID-19
8.
ssrn; 2020.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3570565

Résumé

Severe COVID-19 patients account for most of the mortality of this disease. Early detection and effective treatment of severe patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model correctly classified severe patients with an accuracy of 93.5%, and was further validated using ten independent patients, seven of which were correctly classified. We identified molecular changes in the sera of COVID-19 patients implicating dysregulation of macrophage, platelet degranulation and complement system pathways, and massive metabolic suppression. This study shows that it is possible to predict progression to severe COVID-19 disease using serum protein and metabolite biomarkers. Our data also uncovered molecular pathophysiology of COVID-19 with potential for developing anti-viral therapies.Funding: This work is supported by grants from Westlake Special Program for COVID19 (2020), and Tencent foundation (2020), National Natural Science Foundation of China (81972492, 21904107, 81672086), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04). Conflict of Interest: The research group of T.G. is partly supported by Tencent, Thermo Fisher Scientific, SCIEX and Pressure Biosciences Inc. C.Z., Z.K., Z.K. and S.Q. are employees of DIAN Diagnostics.


Sujets)
COVID-19 , Troubles du rythme circadien du sommeil
9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.07.20054585

Résumé

Severe COVID-19 patients account for most of the mortality of this disease. Early detection and effective treatment of severe patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model correctly classified severe patients with an accuracy of 93.5%, and was further validated using ten independent patients, seven of which were correctly classified. We identified molecular changes in the sera of COVID-19 patients implicating dysregulation of macrophage, platelet degranulation and complement system pathways, and massive metabolic suppression. This study shows that it is possible to predict progression to severe COVID-19 disease using serum protein and metabolite biomarkers. Our data also uncovered molecular pathophysiology of COVID-19 with potential for developing anti-viral therapies.


Sujets)
COVID-19 , Anomalies des plaquettes
10.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-19724.v1

Résumé

Background: Serum Amyloid A (SAA) is an acute-phase reactant downstream of the pro-inflammatory cytokines released during virus infection. However, the role of this inflammatory marker in SARA-CoV-2 infection is yet to be elucidated. Here, we explored the potential use of SAA in serum as a biomarker for monitoring the clinical course of COVID-19 patients.Methods: The subjects included 95 COVID-19 patients discharged from the hospital with acute and / or convalescent phases data, among them 69 patients had paired data. Mann-Whitney U statistics and Wilcoxon signed-rank test were used to compare SAA level in the acute and convalescent phases. A subgroup of COVID-19 patients (n=9) participated in a follow-up examination with repeated blood collection reach five times during the hospitalization. The correlations of SAA levels with laboratory testing were then analyzed using the Spearman test.Results: The results of the data analysis show that the media SAA levels at acute phases were significantly higher (P < 0.05) compared to that at baseline. Furthermore, ascensional range of SAA were associated with the degree of COVID-19 severity. Media SAA levels at convalescent phases were significantly decreased (P < 0.05) compared to that at acute phases. The same phenomenon was seen in patients with and without comorbidities and with fever patients except without fever patients. Furthermore, The SAA concentration change in 9 COVID-19 patients of longitudinal follow-up along with the CT score and SARS-CoV-2 nucleic acid change. In the course of the disease, SAA changes were greater than CRP, lymphocytes, and neutrophils.Conclusions: The serum SAA levels were found to be significantly correlated with impending course of the COVID-19, and may serve as a useful biomarker to monitor the complicated clinical course of the disease.


Sujets)
Infections , Fièvre , Infections à virus oncogènes , COVID-19
SÉLECTION CITATIONS
Détails de la recherche